13 research outputs found

    Field effect enhancement in buffered quantum nanowire networks

    Get PDF
    III-V semiconductor nanowires have shown great potential in various quantum transport experiments. However, realizing a scalable high-quality nanowire-based platform that could lead to quantum information applications has been challenging. Here, we study the potential of selective area growth by molecular beam epitaxy of InAs nanowire networks grown on GaAs-based buffer layers. The buffered geometry allows for substantial elastic strain relaxation and a strong enhancement of field effect mobility. We show that the networks possess strong spin-orbit interaction and long phase coherence lengths with a temperature dependence indicating ballistic transport. With these findings, and the compatibility of the growth method with hybrid epitaxy, we conclude that the material platform fulfills the requirements for a wide range of quantum experiments and applications

    Sequential Electron Transport and Vibrational Excitations in an Organic Molecule Coupled to Few-Layer Graphene Electrodes

    Get PDF
    Graphene electrodes are promising candidates to improvereproducibility and stability in molecular electronics through new electrode−molecule anchoring strategies. Here we report sequentialelectron transport in few-layer graphene transistors containing individualcurcuminoid-based molecules anchored to the electrodes via π −π orbital bonding. We show the coexistence of inelastic co-tunneling excitations with single-electron transport physics due to an intermediate molecule−electrode coupling; we argue that an intermediate electron−phononcoupling is the origin of these vibrational-assisted excitations. Theseexperimental observations are complemented with density functionaltheory calculations to model electron transport and the interaction between electrons and vibrational modes of thecurcuminoid molecule. We ïŹnd that the calculated vibrational modes of the molecule are in agreement with theexperimentally observed excitation

    Electrically-driven phase transition in magnetite nanostructures

    Full text link
    Magnetite (Fe3_{3}O4_{4}), an archetypal transition metal oxide, has been used for thousands of years, from lodestones in primitive compasses[1] to a candidate material for magnetoelectronic devices.[2] In 1939 Verwey[3] found that bulk magnetite undergoes a transition at TV_{V} ≈\approx 120 K from a high temperature "bad metal" conducting phase to a low-temperature insulating phase. He suggested[4] that high temperature conduction is via the fluctuating and correlated valences of the octahedral iron atoms, and that the transition is the onset of charge ordering upon cooling. The Verwey transition mechanism and the question of charge ordering remain highly controversial.[5-11] Here we show that magnetite nanocrystals and single-crystal thin films exhibit an electrically driven phase transition below the Verwey temperature. The signature of this transition is the onset of sharp conductance switching in high electric fields, hysteretic in voltage. We demonstrate that this transition is not due to local heating, but instead is due to the breakdown of the correlated insulating state when driven out of equilibrium by electrical bias. We anticipate that further studies of this newly observed transition and its low-temperature conducting phase will shed light on how charge ordering and vibrational degrees of freedom determine the ground state of this important compound.Comment: 17 pages, 4 figure

    Selectivity Map for Molecular Beam Epitaxy of Advanced III-V Quantum Nanowire Networks

    Get PDF
    This is an open access article published under an ACS AuthorChoice License. See Standard ACS AuthorChoice/Editors' Choice Usage Agreement - https://pubs.acs.org/page/policy/authorchoice_termsofuse.htmlSelective-area growth is a promising technique for enabling of the fabrication of the scalable III-V nanowire networks required to test proposals for Majorana-based quantum computing devices. However, the contours of the growth parameter window resulting in selective growth remain undefined. Herein, we present a set of experimental techniques that unambiguously establish the parameter space window resulting in selective III-V nanowire networks growth by molecular beam epitaxy. Selectivity maps are constructed for both GaAs and InAs compounds based on in situ characterization of growth kinetics on GaAs(001) substrates, where the difference in group III adatom desorption rates between the III-V surface and the amorphous mask area is identified as the primary mechanism governing selectivity. The broad applicability of this method is demonstrated by the successful realization of high-quality InAs and GaAs nanowire networks on GaAs, InP, and InAs substrates of both (001) and (111)B orientations as well as homoepitaxial InSb nanowire networks. Finally, phase coherence in Aharonov-Bohm ring experiments validates the potential of these crystals for nanoelectronics and quantum transport applications. This work should enable faster and better nanoscale crystal engineering over a range of compound semiconductors for improved device performance

    Investigation of electrically driven transition in magnetite nanostructures

    No full text
    Magnetite, Fe3O4, is a strongly electronically correlated system and thus exhibits remarkable electrical and magnetic properties, including the Verwey transition at TV 122 K, which has attracted much attention since its 1939 discovery. Fe3O 4 has recently revealed a new effect. By performing experiments at the nanoscale, we have discovered a novel electric-field driven transition (EFD) in magnetite below TV, from high- to low-resistance states driven by application of high bias. The EFD transition is detected both in Fe3O4 nanoparticles and thin films, is hysteretic in voltage under continuous biasing, and is not caused by self-heating. In this thesis we report on a thorough investigation of this new EFD transition. First, we unveil the origin of hysteresis observed in I-V curves. By applying voltage in a pulsed manner with controlled parameters, we unambiguously demonstrate that while the transition is field-driven, hysteresis results from Joule heating in the low-resistance state. A simple relaxation-time thermal model captures the essentials of the hysteresis mechanism. Second, by doing multilead (four-terminal) electrical measurements, we quantitatively separate the contributions of the Fe3O4 channel and each metal/electrode interface, and explore the contact effects upon testing devices incorporating various contact metals We demonstrate that on the onset of the transition, contact resistances at both source and drain electrodes and the resistance of Fe3O4 channel decrease abruptly. Finally, we measured the distribution of switching voltages, V sw, its evolution with temperature, and its dependence on out-of-plane magnetic field. Based on the experimental facts collected in this work we suggest the possible mechanism of EFD transition in Fe 3O4 as a charge gap closure by electric field. This is one of the first experimental observation of a theoretically predicted EFD transition in correlated insulators. These studies demonstrate that nanoscale, nonequilibrium probes can reveal much about the underlying physics of strongly correlated materials

    Coplanar switching of polarization in thin films of vinylidene fluoride oligomers

    Get PDF
    Switching characteristics of vinylidene fluoride oligomer thin films with molecular chains aligned normal to the substrate and exhibiting a preferential in-plane polarization have been investigated using coplanar geometry of inter-digital electrodes via high-resolution piezoresponse force microscopy. It has been shown that in-plane switching proceeds via non-180 rotation of dipoles mediated by non-stochastic nucleation, expansion, and coalescence of domains. Asgrown multidomain configuration is found to be strongly pinned aided by charged domain walls, and the electrically induced (in-plane) mono-domain states relax to the as-grown state. The observed coercive field (approximately 0.6 MV/m) is two to three orders of magnitude smaller than that for the oligomer films with out-of-plane polarization. It is suggested that the low steric hindrance to the rotation of molecular dipoles gives rise to the observed low coercive field

    Electrically driven phase transition inmagnetite nanostructurers

    No full text
    Magnetite (Fe3O4), an archetypal transition-metal oxide, has been used for thousands of years, from lodestones in primitive compasses(1) to a candidate material for magnetoelectronic devices(2). In 1939, Verwey(3) found that bulk magnetite undergoes a transition at T-V approximate to 120K from a high-temperature \u27bad metal\u27 conducting phase to a low-temperature insulating phase. He suggested(4) that high-temperature conduction is through the fluctuating and correlated valences of the octahedral iron atoms, and that the transition is the onset of charge ordering on cooling. The Verwey transition mechanism and the question of charge ordering remain highly controversial(5-11). Here, we show that magnetite nanocrystals and single-crystal thin films exhibit an electrically driven phase transition below the Verwey temperature. The signature of this transition is the onset of sharp conductance switching in high electric fields, hysteretic in voltage. We demonstrate that this transition is not due to local heating, but instead is due to the breakdown of the correlated insulating state when driven out of equilibrium by electrical bias. We anticipate that further studies of this newly observed transition and its low-temperature conducting phase will shed light on how charge ordering and vibrational degrees of freedom determine the ground state of this important compound

    Sequential Electron Transport and Vibrational Excitations in an Organic Molecule Coupled to Few-Layer Graphene Electrodes

    No full text
    Graphene electrodes are promising candidates to improvereproducibility and stability in molecular electronics through new electrode−molecule anchoring strategies. Here we report sequentialelectron transport in few-layer graphene transistors containing individualcurcuminoid-based molecules anchored to the electrodes via π −π orbital bonding. We show the coexistence of inelastic co-tunneling excitations with single-electron transport physics due to an intermediate molecule−electrode coupling; we argue that an intermediate electron−phononcoupling is the origin of these vibrational-assisted excitations. Theseexperimental observations are complemented with density functionaltheory calculations to model electron transport and the interaction between electrons and vibrational modes of thecurcuminoid molecule. We ïŹnd that the calculated vibrational modes of the molecule are in agreement with theexperimentally observed excitation
    corecore